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No-return transition states (TSs) defined in multidimensional phase space, where recrossing trajectories
through the commonly used ‘‘configuration’’ TS pass only once, robustly exist up to a moderately high-
energy regime above the reaction threshold, even when nonlinear resonances among the bath degrees of
freedom perpendicular to the reaction coordinate result in local chaos. However, at much higher energy
when global chaos appears in the bath space, the separability of the reaction coordinate from the bath
degrees of freedom starts to lose locally. In the phase space near the saddles, it is found that the slower the
system passes the TS, the more recrossing trajectories reappear. Their implications and mechanisms are
discussed concerning to what extent one can define no-return TSs in the high-energy regime above the
reaction threshold.
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Transition states (TSs) have provided us with great in-
sights in understanding reaction rates not only in chemistry
[1] but also in atomic physics [2], cluster physics [3],
celestial mechanics [4], and biology [5]. The TS is defined
as a dividing hypersurface through which reacting species
pass only once on the way from the reactant to the product.
One often defines the TS in the configuration space.
However, this idea suffers from the recrossing problem
and overestimates the reaction rates. One of the most out-
standing questions to be addressed is to clarify in what
circumstance such a no-return TS exists, which enables us
to estimate the accurate reaction rates.

Recently, several remarkable developments have shed
light on the passage mechanics through potential saddles of
index one (equilibrium points with one negative Hessian
eigenvalue). Theoretical studies on isomerization reactions
of Lennard-Jones atomic clusters, that showed a decrease
of local Lyapunov exponents in the regions of saddles
compared with those in the potential well, implies dynami-
cal regularity of passage near the potential saddle [6].
Experiments on the decomposition of vibrationally excited
ketenes by Lovejoy et al. showed monotonical increases
with quantized steps in the reaction rates as a function of
energy above the threshold [7,8]. It was argued [9,10] that
this indicates the existence of approximate invariants of
motion in the TS.

The existence of no-return TSs was well established in
2 degrees of freedom (DOF) Hamiltonian systems. An
unstable periodic orbit at the unstable equilibrium point
(i.e., saddle point), that is an invariant of motion, gives rise
to the so-called ‘‘periodic orbit dividing surface (PODS)’’
[11,12]. The generalization to many-DOF systems, how-
ever, has been unresolved until very recently [13]. The
general procedure for extracting the no-return TSs from

many-DOF phase space is described in detail in
Ref. [2,14]. The crux is to generate a sequence of nonlinear
canonical transformations in the region of the index one
saddle that transforms the Hamiltonian into a normal form
(a classical analog of the Dunham Hamiltonian in molecu-
lar spectroscopy). This construction provides us with a
fundamentally new object, namely, the normally hyper-
bolic invariant manifold (NHIM), that takes the place of
the PODS in many-DOF reacting systems. This building
block enables us to define a robust no-return TS as a
dividing hypersurface that decomposes the multidimen-
sional phase space into the distinct regions of reactant
and product. Moreover, the orbits that asymptotically ap-
proach to (leave from) the NHIM construct the stable
(unstable) invariant manifolds, and form the boundary of
the reaction paths in the phase space through which all
reactive trajectories necessarily follow [15].

Up to the present, the versatility of the no-return TSs and
the reaction paths in the phase space has been well exam-
ined in evaluating the accurate reaction rates in isomer-
ization reactions of the 6-atom cluster [3,16] and HCN
[17,18], ionization of a hydrogen atom in crossed electric
and magnetic fields [2], and also the escape of asteroids
from Mars [4]. However, most of the studies are only
concerned with the low energy regime above the threshold
(saddle point energy) where the passage dynamics is com-
pletely regular and the NHIM simply consists of unstable
quasiperiodic orbits. The reaction rates in this energy
regime monotonically increase in quantized steps with
the energy of the system [7,8].

As the energy increases more above the threshold, non-
linear resonances start to take place among the bath DOF
near the index one saddles. These can cease most of the
invariants of action in the bath space. Nevertheless, nu-
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merical evidences from the isomerization of 6-atom clus-
ters [3,16] suggest that the NHIM and its stable or unstable
manifolds still act as approximate invariants at such mod-
erately high energies above the threshold. Furthermore, the
robust existence of no-return TS enables us to evaluate the
reaction rate quite accurately. As pointed out previously
[19], this is due to the fact that the small denominator
problem, which causes divergences of the perturbation
expansion in the normal form calculation, can never be
encountered by terms involving an imaginary frequency
associated with the reactive DOF and the real frequencies
of the bath DOF [20].

At much higher energies above the threshold, it was
shown in the 6-atom cluster isomerization [3,16] that the
no-return TS in phase space breaks down. Moreover, the
experiments on ketene decomposition [7,8] revealed that
the simple monotonic increase of the rates ceases in the
high-energy regime. This indicates the destructions of the
invariants of motion of the bath DOF and of the no-return
TS. However, the general breakdown mechanisms of the
concept of no-return TS have been yet one of the most
outstanding unresolved problems. The purpose of the
present Letter is to reveal in what circumstance nonlinear
resonances among the bath DOF affect the existence of the
no-return TS in the high-energy regime above the thresh-
old. In particular, we demonstrate that the one-dimensional
nature of the reaction coordinate, that decouples from the
bath DOF up to moderately high energies, does not hold
when global chaos arises in the bath space.

Our procedure is quite general, in principle, to any
reacting systems in which the reactions are mediated
through a potential saddle of index one at constant energy
E. First, we expand a given N-DOF Hamiltonian system
near the saddle as
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where E0 is the energy of the saddle point, and Hn
consists of terms of the nth degree in �p;q� �
�p1; . . . ; pN; q1; . . . ; qN�. Here, (p1, q1) are the momentum
and coordinate of the reactive normal mode, and those of
the bath normal modes are denoted by �pb;qb� �
�p2; . . . ; pN; q2; . . . ; qN�. Note that !1 is pure imaginary
and !i is real for i � 2.

Next, we formally transform the Hamiltonian H to a
‘‘partial’’ normal form H0 in which only the reactive DOF
is normalized so that it is separated from the bath space
[21].
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is the imaginary ‘‘action’’ [22] of the new reactive mode
(p01, q01), and �p0b;q
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the new bath modes [23]. The functions f1 and f2 contain
anharmonic terms in powers of the partial normal form
variables (p0, q0). In particular, f1 is defined so that f1 � 0
when J01 � 0. Since the partial normal form does not
involve the ‘‘angle’’ variable conjugated to J01, the action
variable J01 is an invariant of motion. This ensures the
existence of no-return TS if H can actually be transformed
into Eq. (2). However the separability of the reactive DOF
is not guaranteed when the energy becomes high. In the
following, we scrutinize the validity of the transformation
by monitoring the invariance of the action J01�p;q� along
the dynamics of the original Hamiltonian H. We also
analyze the role of resonances among the bath DOF for
the persistence of no-return TS by projecting the original
dynamics onto the new variables [p0i�p;q�, q

0
i�p;q�] [3].

As an illustrative vehicle, we apply this to the following
three-DOF Hamiltonian, which is regarded as a prototype
of isomerization reactions,
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The parameters are a1 � �35=75, a2 � 2=1875, !2 � 1,
!3 � 0:809, q10 � 2, q11 � �q12 � 14:1421, �0 �
1=16, �1 � �2 � 1, �0 � 8, �1 � �2 � 1, �0 � 0:75,
and �1 � �2 � 1. The ratio between !2 and !3, approxi-
mately the golden mean, was chosen to avoid linear reso-
nance. The imaginary frequency associated with q1 at the
saddle is estimated as!1 ’ �0:924i. The nonzero value of
q10 aims at avoiding specific symmetry of the potential
energy function in q1. The Hamiltonian Eq. (4) is trans-
formed to the partial normal form Eq. (2) up to the 15th
order. The no-return TS in many-DOF phase space may, in
general, bifurcate and migrate outward the remote regions
from the saddle when E increases above the threshold as
PODS does in two DOF systems [11]. In order to focus on
the breakdown (not just bifurcation) of the no-return TS,
the potential parameters are chosen such that the break-
down of the no-return property takes place a priori to the
bifurcation of the no-return TS as E increases above the
threshold.

In Fig. 1, we display the surface of section (SOS) of the
NHIM defined by the condition q02 � 0 and p02 > 0. Note
that the SOS should consist of a set of ellipses when the
invariants of action exist for all the bath modes, resulting in
the quantized monotonic increase of the reaction rate [7,8].
Here, two cases are shown: the case when most of the tori
survive with some isolated stochastic layers [Fig. 1(a)], and
the case when globally chaotic regions appear [Fig. 1(b)].
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In Fig. 2, a few representative recrossing trajectories obey-
ing the original Hamiltonian H are shown at E � 0:05 on
both the (p1, q1) and (p01, q01) planes. We can see how well
the no-return TS persists robustly even when chaos exists
locally on the bath space. The partial normal form ‘‘ro-
tates’’ away the recrossing orbits on (p1, q1), in which the
new action J01 actually behaves as a good invariant.

In the much higher energy regime above the threshold, it
was found that the application of the Padé approximants to
the series of partial normal form is crucial to confirm if the
fluctuation in J01 arises from the finite truncation of the
perturbation calculation, or from an inherent change of the
underlying phase space structure.

Given a perturbation expansion of a physical quantity �
(e.g., � � q01, J01, p03, etc.) in the partial normal form up to
the kth order ��p;q� �

Pk
j�0 �

j�j�p;q�, where �j denotes
terms of jth power in (p, q) and �j keeps track of their
power for j � 0; . . . ; k. The Padé approximant ��n;m����
with n�m� 1 	 k is a rational approximation to � de-
fined by Pn���=Pm���, where Pn��� and Pm��� are
polynomials of order n and m in �, respectively, with
coefficients depending on (p, q) [24]. In this Letter,
we extrapolated all physical quantities in the partial
normal form calculation by the Padé approximants with
n � m � 6.

In Fig. 3, we show a few representative reactive trajec-
tories obeying the original Hamiltonian H on the (p01, q01)
plane with different J01 at the entrance to the saddle at E �
0:15. The Padé approximants of (p01, q01) show the exis-
tence of singularities in the partial normal form calculation
(whose regions in the phase space have been considered as
resonance regions [24]). The singularities are more pro-
nounced as the trajectory is closer to the ‘‘NHIM’’ and its
‘‘stable and unstable invariant manifolds’’ with J01 � 0
predicted by Eq. (2). Moreover, the inset of Fig. 3 reveals
that these trajectories cross the ‘‘stable or unstable mani-
folds’’ and, in particular, they recross the ‘‘no-return TS.’’
The closer the trajectories are to the phase space regions of
J01 � 0, the more energy should be distributed into the bath

space because of energy conservation. This results in larger
possibilities to yield stronger nonlinear resonances in the
bath space.

To look deeper into the question of why the concept of
no-return TS and the one-dimensional nature of the reac-
tion coordinate are ruined in such a high-energy regime
above the threshold, we compare the time evolution of the
action J01 with the local Lyapunov exponents (LLEs) for the
reactive and bath directions near the saddle. Figure 4(a)
shows the Padé approximant of J01, and Fig. 4(b) displays
the two largest LLEs �1 and �2, where �1 and �2 represents
the instability along the reactive and bath directions, re-
spectively. Here, LLEs were estimated for the reactive
trajectory closest to the regions of J01 � 0 in Fig. 3 by
using the Jacobian method [6]. Note that the large singular
peaks of J01 appear when the value of �2 becomes compa-
rable to �1. The sufficient condition for the existence of
NHIM is that the absolute values of LLE along its normal
directions are much larger than those along its tangential
ones (termed as normal hyperbolicity) [25,26]. Instability
of the dynamics on the NHIM is, thus, closely related to its
structural stability. Figure 4 provides us with the first
numerical evidence that the singularities of the action
emerge, i.e., breakdown of the NHIM, when trajectories

FIG. 2 (color online). Projections of representative recrossing
orbits observed on the (p1, q1) plane onto the (p01, q01) plane at
E � 0:05: (a) (p1, q1), (b) (p01, q01). The no-return TS in phase
space is given by f�p0;q0�jq01 � 0; H0�J01 � p021 =�2!1�;p0b;q

0
b� �

Eg.

FIG. 3 (color online). Projections of representative reactive
trajectories on the Padé approximants of the (p01, q01) at E �
0:15.

FIG. 1. The SOS on the NHIM displayed on the (q03, p03) plane:
(a) E � 0:05 with some isolated stochastic layers, (b) E � 0:15
when global chaos emerges. The NHIM is represented by
f�p0;q0�jp01 � q01 � 0; H0�J01 � 0;p0b;q

0
b� � Eg.
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come near to the breakdown of normal hyperbolicity. The
breakdown of NHIM by chaos in the bath space is a new
phenomenon inherent to many-DOF systems.

In this Letter, we have examined the definability of no-
return TS in the high-energy regime above the reaction
threshold before the bifurcation of TS takes place [27].
When the energy above the saddle is not so high, we have
confirmed the robust existence of no-return TS, i.e., the
property of no-return persists even when chaos emerges
among the bath modes. As the energy increases further, the
no-return TS ceases to exist locally near the saddle because
of strong chaos emerging in the bath space. These effects
are strongly pronounced in those regions where the LLEs
along the bath directions come nearer to the LLE along the
reactive direction.

These observations lead us to the question: Is the con-
cept of no-return TS ruined completely? A ‘‘vague’’ TS
could be defined even when the no-return TS no longer
exists in the mathematical sense. As energy increases
above the saddles, the concept of no-return TS would
initially break down in the local regions where the LLEs
along the reactive and bath directions are comparable.
Nevertheless, we could still define a vague TS using the
other regions of the phase space (e.g., [24]) where the
LLEs along the bath directions are smaller than those along
the reactive one. Recently, it is shown that the NHIM exists
even under the influence of an external noise [28].
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[4] C. Jaffé, S. D. Ross, M. W. Lo, J. Marsden, D. Farrelly, and

T. Uzer, Phys. Rev. Lett. 89, 011101 (2002).
[5] M. Karplus, J. Phys. Chem. B 104, 11 (2000).
[6] R. J. Hinde and R. S. Berry, J. Chem. Phys. 99, 2942

(1993).
[7] E. R. Lovejoy, S. K. Kim, and C. B. Moore, Science 256,

1541 (1992).
[8] E. R. Lovejoy and C. B. Moore, J. Chem. Phys. 98, 7846

(1993).
[9] D. C. Chatfield, R. S. Friedman, D. G. Truhlar, and D. W.

Schwenke, Faraday Discuss. Chem. Soc. 91, 289 (1991).
[10] R. A. Marcus, Science 256, 1523 (1992).
[11] P. Pechukas and E. Pollak, J. Chem. Phys. 67, 5976

(1977).
[12] P. Pechukas, in Dynamics of Molecular Collisions, Part B,

edited by W. H. Miller (Plenum, New York, 1976).
[13] Geometrical Structures of Phase Space in

Multidimensional Chaos: Applications to Chemical
Reaction Dynamics in Complex Systems, edited by M.
Toda, T. Komatsuzaki, T. Konishi, R. S. Berry, and S. A.
Rice, Adv. Chem. Phys. Vol. 130A,130B (John Wiley &
Sons, New York, 2005), and references therein.

[14] T. Komatsuzaki and R. S. Berry, Adv. Chem. Phys. 123, 79
(2002).

[15] E. Pollak and M. S. Child, J. Chem. Phys. 73, 4373 (1980).
[16] T. Komatsuzaki and R. S. Berry, Proc. Natl. Acad. Sci.

U.S.A. 98, 7666 (2001).
[17] H. Waalkens, A. Burbanks, and S. Wiggins, J. Chem.

Phys. 121, 6207 (2004).
[18] C. B. Li, Y. Matsunaga, M. Toda, and T. Komatsuzaki,

J. Chem. Phys. 123, 184301 (2005).
[19] R. Hernandez and W. H. Miller, Chem. Phys. Lett. 214,

129 (1993).
[20] J. Moser, Commun. Pure Appl. Math. 11, 257 (1958).
[21] C. B. Li, A. Shojiguchi, M. Toda, and T. Komatsuzaki,

Few-Body Syst. 38, 173 (2006).
[22] W. H. Miller, Faraday Discuss. Chem. Soc. 62, 40

(1977).
[23] S. Wiggins, L. Wiesenfeld, C. Jaffé, and T. Uzer, Phys.
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FIG. 4. Comparison between singularities of J01 and LLEs for
the trajectory closest to the regions of J01 � 0 in Fig. 3: (a) The
Padé approximant of �iJ01. (b) �1 and �2. The instantaneous
values of LLEs are averaged over a time of 1 unit so that Re��1�
coincides with j!01j � j@H

0=@J01j.
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